Elemental Carbon Emissions from Mobile Sources: Understanding the Controlling Variables and Resulting Vehicle Fleet Averages

James J. Schauer, Ph.D., PE
Associate Professor
University of Wisconsin-Madison

Critical Questions

- What are the primary variables impacting the emissions rates of EC from Spark Ignition (SI) and Compression Ignition (CI) vehicles
- How can representative emissions profiles and emissions factors be estimated for mobile source activities in different urban areas
- In the absence of other major EC sources, what are relative contributions of CI and SI vehicles to EC emissions
- What is the relative contribution of SI and CI vehicles to EC emissions in the presences of other important EC sources
- Are the answers to the above questions different for different definitions of EC and BC

Cautionary Notes

- All of the measurements that I will discuss are based on NIOSH 5040 using the ACE-Asia protocol (Schauer et al., 2003)
 - Defined as Elemental Carbon (EC)
- I will not present any absorption measurements
 - Defined as Black Carbon (BC)
- There are strong correlations between BC, NIOSH EC and IMPROVE EC
 - The relationships among these different parameters vary with EC sources

What impacts EC emissions

- Driving Cycle
- Cold Start Conditions
- Fuel Composition
- Vehicle Distribution
 - Engine Technology
 - Engine Maintenance
 - Exhaust after treatment

Diesel Engine Research Lab

CARB 8 Mode Cycle – Diesel Engine

Effect of Engine Load – Diesel Engine

(Kweon et al., 2002, SAE 2002-01-2670)

Effect of Fuel – Diesel Engine

(Kweon et al., 2002, SAE 2003-01-1899)

Figure 18. Emission index (EI) of EC vs. equivalence ratio (ϕ) for Fuel A, Fuel B, and F-T fuel for CARB 8-mode test cycle.

Effect of Cold-Cold Start - Gasoline

DOE/NREL Cold-Cold Start Study Schauer et al., 2003 – DOE Report

- Four on-road vehicles
 - 1999 Ford F150
 - 1998 Ford Windstar
 - 1995 Ford Escort
 - 1999 Chevy Prism
- Each Vehicle Tested
 - 3 "Cold-Cold" UDC Engine Oil at 0 °C
 - 3 Hot UDC Composited to One Sample per Vehicle
 - Steady State Driving 20, 35, 65, and 70 MPH
- Five Dilution Tunnel Blanks
- Daily Dilution Air Blanks

Cold-Cold Start Gasoline Engine EC Emissions

Particle Size Distribution for Cold-Cold Start UDC Driving Cycle Test 13 - Vehicle 2 - Windstar

DOE Gasoline/Diesel Split Study

- Funding James Eberhardt (DOE)
- Management/Recruitment Doug Lawson (NREL)
- Gasoline Vehicle Testing Peter Gabel (EPA)
- Diesel Engine Testing Nigel Clark (WVU)
- Sampling, Chemical Analysis and Source Apportionment Modeling
 - Fujita, Zielinska, Arnott, and Campbell (DRI)
 - Schauer, Lough, and Christensen (UW-Madison)

Gas/Diesel Split Vehicle Test Matrix

- Gasoline Powered Vehicles 57 Vehicles
 - Cold UDC Test
 - Hot UDC Test
- Diesel Vehicles 34 Vehicles
 - 34 CSHVR Cycles
 - 32 Highway Cycles
 - 34 Idle Tests
 - 10 Cold CSHVR Cycles
 - 2 Manhattan Bus Cycles
 - 10 Other Cycles
- Chemical Analysis
 - ECOC
 - Detail chemical speciation

Gasoline Vehicle EC Emissions The PM2.5 Emissions EC/OC Compared to OC Emissions Rate

OC Emissions Rate (mg per mile)

Key Observations – Gasoline Vehicles

- Significant variability in EC emissions and the EC/OC ratio from vehicle to vehicle
- Generally higher EC emissions for Cold Start
- In the context of climate change and urban air pollution, we are not interested in variability of emissions from vehicle to vehicle
- We need to understand the variability in emissions from vehicle fleet to vehicle fleet
 - Vehicle distribution
 - Distribution of cold and hot start
- Sensitivity analysis was performed

Sensitivity of EC/OC to Gasoline Vehicle Distribution – Base Cases

Sensitivity of EC/OC to Gasoline Vehicle Distribution – High Emitter Cases

Sensitivity of EC/OC to Diesel Vehicle Age

Sensitivity of EC/OC to Diesel Weight Class

Sensitivity of EC/OC to Diesel Driving Cycle

Ambient Monitoring Perspective

- Ambient monitoring can be a reality check for both top down and bottom up emissions inventory estimates for EC
 - Weekday-Weekend Variations
 - Example: Bae et al., 2004 AWMA
 - Spatial Variations
 - Seasonal Variations
 - Example: Schauer et al., 2005 HEI Final Report

Figure 5. One-in-six and day-of-week average of daily measurement of denuded fine particle concentration at the St. Louis Midwest Supersite for the 2002 data set: (a) One-in-six OC; (b) One-in-six EC; (c) Day-of-week OC; and (d) Day-of-week EC.

Conclusions

- EC emissions for mobile sources are greatly impacted by vehicle fleet, driving cycle, fuel, cold start conditions, and engine technology and maintenance
- Need to focus on average fleet emissions and the sensitivity of emissions to vehicle fleet, driving cycle, cold start conditions and fuel.
- Need to use ambient measurement strategies as a reality check to bottom up and top down emissions inventory estimates
- Need to develop a parallel understanding of the EC emissions from other source categories

